
0M# fto O7OE4flURE AD-A264 046
140W '" " II( oujmaf WSoomeOn. illIN1 iii 11 1111 tI~ ~ ~i ll 1:: Ie06 pwoul pow__________________________________20$0 _____0us oft 1.L RE. T TYPE A v DAT E c .COVERE

IMarch 22. 1993 1, ~ -
1. AGENCY UEOL EOTP W AE OEE

& mU AND SUBTITLE 2. A FUNDING NUMBERS

Kinetics and Dynamics of Reacting Systems

LAUTHORWS

Sidney Redner DI
7. PtFORMING ORGANIZATION NAMEIS) AND ADOR A% S.TI .S, PERUORMIG ORGANIZATIONMAY 1.0 1993 REPORT NUMBERITrustees of Boston University • .. v•~liI..,N.
!881 Commonwealth Avenue ;5 D •
Boston University i
Boston, MA 02215

9. SPONSORING/MONrTOAING AGENCY NAME(S) AND AOORESS(ES) 10. SPONSORING /MONITORING
AGENCY REPORT NUMBER

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park, NC 27709-2211 /r)J I -c

11. SUPPLEMENTARY NOTES

The view, opinions and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

12a. DISTRIBUTION fAVAILABIUJTY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13 'ABSTRACT {Mai mum Z00 w.........

This project was devoted to a study of the kinetics of diffusion-controlled and
surface catalytic reactions. For catalytic reactions, the kinetics of the
saturation process was elucidated. The role of interactions between adsorbates
on the surface reaction was examined. For diffusion-controlled reaction, a
comprehensive theoretical framework to describe the spatial organization of
reactants was developed. Particular attention was devoted to understanding
the reaction dynamics at an interface which separates two reactive species.
Geometrical features of this interface and the time dependence of the reaction
rate were determined.

14. SUBJECT TERMS IS. NUMBER OF PAGES
9

Chemical kinetics; catalysis; diffusion-controlled reactions P-IC1COOf

17. SECURITY CLASSIFICATION 13. 5ECURITY CLSSIFIATION It. SECURITY CLASSIICATION U0 LMITAT1ON OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

4SN 7S40¶-2W50.00 Statard form 29B (ROV 2-691
"mtoz



KINETICS AND DYNAMICS OF REACTING SYSTEMS

FINAL REPORT

NTIS CRA&I 1
DTIC TAB El
UOinnounced 9
Justifictlo'n

Sidney Redner B
DistribullOn

AvahllbdItly Codes

Avadt andlto

March 22, 1993Special

U. S. ARMY RESEARCH OFFICE

CONTRACT/GRANT NUMBER: DAALO3-89-K-0025

BOSTON UNIVERSITY, BOSTON, MA 02215

APPROVED FOR PUBLIC RELEASE;
DISTRIBUTION UNLIMITED.

93-09656

9 3 5 04 20 7 IlhlI!IilIIIIlIlIll



THE VIEW, OPINIONS AND/OR FINDINGS CONTAINED IN THIS REPORT ARE
THOSE OF THE AUTHOR AND SHOULD NOT BE CONSTRUED AS AN OFFICIAL
DEPARTMENT OF THE ARMY POSITION, POLICY, OR DECISION, UNLESS SO
DESIGNATED BY OTHER DOCUMENTATION.



1. Foreword

There were two major results in this project. First, we elucidated the kinetics of
surface reaction models which serve as idealization of catalytic reactions. We determined
the kinetics of the saturation process, whereby the surface becomes filled by a single species
and no further reaction is possible. We also examined the role of interactions between
adsorbates on the reaction kinetics. Second, we developed a comprehensive theoretical
framework to describe the spatial organization of reactants in two-species annihilation,
A + B --+ 0, and in related reactions. Additionally, we investigated the reaction dynamics
at an interface which separates a population of A's and B's. We determined geometrical
features of this interface and the time dependence of the reaction rate.

These topics are treated in more detail in the following report. In Sec. 2, we describe
the scaling behavior and non-equilibrium phase transitions of surface reaction processes.
and in Sec. 3, we discuss the wide variety of interesting features associated with the spatial
organization of reactants in two-species annihilation.

2. Kinetics of Catalytic Surface Reaction Models

(a) Kinetics of saturation in the monomer-monomer model
In the monomer-monomer model, -3 two reactive species, A and B, adsorb irreversibly

onto single sites of a catalytic substrate and nearest-neighbor AB pairs can bond to form
a reaction product which desorbs from the substrate. This bimolecular surface reaction of
the two adsorbed monomeric species can be represented by the following steps:

A+S I!, A.
B+SS- •-+B. (1)

A, + B, -, AB T +2S.

Here A and B denote the two species in the gas phase, S denotes a free surface site, and
the subscript s denotes the adsorbed species. If the adsorption rates, kA and kB, are
much greater than the surface reaction rate, k,, the process is reaction-limited, while the
process is adsorption-limited in the opposite case. In the adsorption step, an A is chosen
with probability p = kA/(kA + kB), or a B is chosen with probability q = 1 - p, and an
attempt is made to adsorb the chosen molecule onto an empty lattice site. If adsorption
occurs, then if A.B, nearest-neighbor pairs are created, one such pair bonds to form an
AB molecule which desorbs from the surface at a rate governed by k,. We first consider
this reaction in the irreversible limit where there is no desorption of unreacted A's or B's.

While this idealized model does not precisely correspond to an actual catalytic reac-
tion, the model incorporates the basic steps of adsorption and surface reaction that are
characteristic of most heterogeneous catalysis reactions.' Additionally, the simplicity of
the monomer-monomer model renders it amenable to detailed theoretical analysis. Thus
the investigation of the monomer-monomer model provides useful insights into more re-
alistic catalytic processes. We first investigated the kinetics of the monomer-monomer
model in a mean-field approximation,' in which the substrate is considered to be an N-site
complete graph. We calculated the probability density that the surface has a given density
difference by analyzing the Fokker-Planck equation' that arises from continuum limit of



the underlying master equation for the probability distribution of the particle numbers.
P(nA,nB).

To write this equation, consider the reaction-limited process on an N-site complete
graph in which each pair of sites is connected. In the reaction-limited case, when an AB
pair reacts, it is replaced by AA, BB, AB, or BA, with respectively probabilities p2 , q2,
pq, and pN, respectively. Thus P(nA,nB) evolves according to a stochastic process with
the corresponding hopping probabilities

W(nA,n "-+ nA ± l,nB l) = 2 2 ( I)(1-- a (2)

with the rate for the null process W(nA, njS --+ nA,nB) = l-W(nA,ni" nfA+l,fn-B1)-
W(nA, B --+ nA - 1, -1B + 1). From the master equation for P(nA, nB), the corresponding
Fokker-Planck equation for P(x) in the continuum limit, when p = q, is

.op(x,t) 1 a2
of 2N aX2 (Wl - X)P(X, 0). (3)

Here x denotes the concentration of the A's, z = nA/N. The state-dependent diffusion
coefficient D(z) = x(1 - z) reflects the fact that the probability of a reaction event is
proportional to the concentration of AB pairs, x(l - z). Thus the evolution of the surface
concentration is analogous to diffusion in a medium that is increasingly "sticky" near the
extremities of a finite absorbing interval, x - :±1l.

The full solution to the probability distribution is an eigenfunction expansion over
Gegenbauer polynomials of order 3/2 (while in the the adsorption-limited case, the expan-
sion is over integer-order Bessel functions).3 From these solutions, we determined that
discrete fluctuations ultimately cause the surface to become "saturated", i. e., completely
covered by only one species, so that the reaction ultimately stops. As the reaction pro-
ceeds, the probability that the catalyst has not saturated by time t decays exponentially in
time, and the mean time until saturation, (t), is proportional to the number of reactive sur-
face sites. Numerical simulations indicate that spatial dimension d = 2 is a critical value,
above which the kinetics of the surface reaction is accurately described by the mean-field
behavior. In one dimension, it is also obtained an exact solution in the rerction-controlled
limit,6 in which (t) is proportional to the square of the length of the system; this agrees
with our earlier numerical studies.

When desorption of reactants is also allowed to occur in the mortmer-monomer model,
a bistability transition occurs as a function of the desorption and reaction rates.' In
the master equation for the evolution of the concentration difference on the complete
graph, desorption leads to both a diffusion and a drift term which drives the system
toward equal concentration of A's and B's. This term counteracts the influence of the
inhomogeneous diffusive term due to the surface reactioa which tends to drive the system
toward saturation. The corresponding Fokker-Planck equation is7

8P(x,t) -p__. ((2x - 1)P(x,t)) +a PD f_ (P(Zt)) + -("PD) (
t 2 x 4NOz2  2 "

(4)
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The stationary solution to this equation is P(y) 0c (1 -(y/Io)1)-e, where yo and a depend
on the desorption rate, and y = (2z - 1) is the density difference between A's and B's. For
large desorption rates, P(y) is peaked at y = 0, (monostable), while for small rates, P(y)
is peaked at y = ±1 (bistable). Our prediction? of a transition between monostability and
bistability has been observed in numerical simulations.'

(b) Kinetics of interacting catalysis models

We have investigated the kinetics of a monomer-monomer catalysis model in which
there is a variable excluded volume interaction among particles of the same species (the A's
for example).,' 9 For no interaction, this system reduces to the monomer-monomer model
for which there is a first-order transition between A- and B-saturated phases as a function
of the relative adsorption rates of the two species. For infinitely strong excluded-volume
interactions, one can view the process as involving a large A particle whose diameter is
larger than a lattice spacing (the "dollar"), so that two dollar particles cannot be nearest-
neighbors, while the smaller ("dime") particles have a sufficiently small radius that they
do not exhibit a nearest-neighbor exclusion. This geometric constraint on the dollar par-
ticles has far-reaching effects on the kinetics. Instead of a first-order transition between
dollar- and dime-saturated phases, we find that there is now a second-order kinetic phase
transition between a dime-saturated phase and a reactive steady state as a function of the
relative deposition rates of the two species. Through numerical simulations, we concluded
that this transition is in the universality class of Reggeon Field theory,10 a class which
encompasses nearly all single component reaction schemes with a unique absorbing state.

We also considered the general case where the magnitude of the excluded volume self-
interaction is variable.9 According to such an interaction, the probability that a particle
of the interacting species can adsorb onto an empty site which is adjacent to a site that is
already occupied by a member of the same species is reduced by an amount which depends
on the interaction strength. As a function of this interaction, the first-order transition line
for weak interaction terminates at a tricritical point where two second-order transitions
meet. These transitions, which also appear to be in the Reggeon Field Theory universality
class, separate the dollar-saturated, reactive, and dime-saturated phases. To determine
the location of the transition and the corresponding scaling exponents, we have performed
Monte Carlo simulations, series expansions, and cluster mean-field approximations.

From Monte Carlo simulations of the steady-state and cluster mean-field approxima-
tions, we find that the concentration of vacancies and dollars both vanish as the dime
saturated phase is approached as c. - (p - pc)O" and CD - (p - pc)OD, respectively.
Here p denotes the relative input rate of dollars, and Pc is the value of this parameter
at the phase transition. We thereby estimate the order-parameter exponents for vacan-
cies and dollar particles to be fl, ý ' 6D = 0.28 ± 0.05. From subcritical series expan-
sions and time-dependent Monte Carlo simulations, we also estimate the dynamical ex-
ponents for the survival probability and the order parameters to be 5 = 0.16 ± 0.01 and
17, = r7D = 0.315 ± 0.005. Here the survival probability exponent 6 is defined in terms of
the survival probability, i. e., the probability that the system has not yet entered a satu-
rated state at time t. This quantity is expected to vary at the critical point as P(t) - t-6.
Similarly the exponents %i' and r7D are defined in terms of the time dependence of the
number of vacancies or dollars, respectively, when the system is initially prepared with all
dimes and a single vacancy. All of our exponent estimates are very close to those of the
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Reggeon field theory in one dimension, suggesting that the two systems are in the same
universality class.

3. Spatial Organization in Two-Species Annihilation

(a) Closest particle to an absorbing trap

We used a quasi-static approximation and extreme value statistics to obtain the typical
value of the distance from an absorbing trap to the nearest particle, Zmin., in a Brownian
particle system.11 The quasi-static approximation is an extremely powerful yet simple
theoretical tool to analyze the spatial distributions of particles in reacting systems that
are governed by diffusive dynamics.12 In this method, the diffusion equation is replaced by
the steady-state Laplace equation, an4 the boundary between the growing depletion layer
due to trapping and the static large-distance profile is accounted for by a moving boundary
condition. This leads to a greatly simplified form for the probability distribution function,
but one which still retains all of the correct asymptotic behavior. We have then applied
extreme value statistics13 to this probability distribution to determine the location of the
particle which is closest to the trap.

In one dimension, we find that the typical value of the distance from the trap to
the closest particle grows with time as xnj. _ t1 /4, and that the probability distribution
for Zmni is a Gaussian times a power law. This reproduces the results from the exact
solution, which is much more complicated, technically." In two dimensions, the exact
solution is extremely involved and physically unilluuninating,' 5 while the quasi-static ap-
proximation provides a simple and physically-appealing method of solution. We find that
p = xmin/(trap radius) grows as X t, and the controlling factor in the distribution for p
behaves as exp(-const. x p2 In p/'If'i). Finally, in three and higher dimensions, we find
that p -ý const. as t -- oco.

(b) Spatial distribution of reactants in two-species annihilation
In diffusion-limited two-species annihilation, A + B -- 0, particles organize into con-

tinuously growing single-species domains of linear dimension proportional to t1/ 2 , while
the typical interparticle spacing grows as t1/4, when d < 4."I This spatial organization is
the mechanism responsible for the well-known slow kinetics, as reactions take place only
on domain boundaries rather than homogeneously throughout the system. Rather unex-
pectedly, we found that a new length scale,' 0 which grows as t 3/8, is needed to describe the
"gaps" between domains in d = 1.17 This interdomain gap size can be derived in terms of
the known decay of the density c(t). If one postulates that the gaps are of length lAB "t
then there will typically be a reaction in each gap in a time interval At cc £1B. This leads
to a change in the concentration which is proportional to the inverse domain size, since
one pair typically reacts per domain. As a result, AS 25 & C- 1 2 - 2c. Thus in order that
c(t) is proportional to f-1/1, it is necessary that C = 3/8.

Concomitantly, we found that the average density profile within a domain is spatially
inhomogeneous. Just as in the case of diffusing particle near a static trap, the density
of one species is depleted as the boundary that defines the opposite species region in
approached. Particles near the center of the domain are relatively closely spaced, with
a typical spacing which grows as W", while particles are systematically more distantly
spaced as the edge of a domain is approached. Within an adiabatic approximation, which
is suitable for slowing growing domains, the shape of the density profile within a single
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domain has a sinusoidal shape, with the density vanishing linearly as the domain edge
is approached. From this inhomogeneous profile, we found an unusual behavior for the
time dependence of moments of the distance distribution between adjacent same species
particles: M. (IA)l". Namely,

1/4 forn<l,

M. t1/4 hnt, for n = 1, (5)
,(3U--)/On for n > 1.

The logarithmic factor in the ratio between the average and typical spacing between neigh-
boring like particles stems directly from the linear decrease in the density near the domain
edge. This same mechanism also leads to a power-law diverging factor for the higher mo-
ments. As n --# oo, the reduced moment is dominated by the sparsely populated region
near the gap where the particles are separated by a distance which grows as t3/ 8 .

Even richer, and unanticipated, spatial organization effects occur when the diffusion
coefficients of the two species, DA and D,, are unequal. For the extreme case where
DB = 0, the spatial correlations of the mobile and immobile species are dramatically
different. The probability of finding a gap of length x between two nearest-neighbors of
the same species decays exponentially in x for the mobile (A) species, and as z- 3 /1 for the
static species (B). The power law decay arises because the spatial correlation of the B's
is altered only by the diffusion of A's into B domains. This kinetics can be described in
terms of the first-passage probability for one-dimensional random walks. 1' Thus B-rich
regions exhibit a very slow decay of correlations and this is ultimately responsible for the
power-law behavior of the gap lengths. Similarly, the distribution of domain lengths L for
the A's also decays exponentially in L, while the distribution decays as L- 1 /1 for the B's.

(c) Dynamics at a reaction interface
In homogeneous two-species annihilation, domains form spontaneously from a randomn

initial reactant distribution, and the kinetics is governed by the reaction rate at the inter-
faces between domains. This motivates our study of a system with a single well-defined
reactive interface, so that the microscopic aspects of the reaction can be probed.19 We
therefore investigated steady-state geometrical properties of the reaction interface in two-
species annihilation, A + B -. 0, when a flux j of A and B particles is injected at opposite
extremities of a finite domain.

The kinetics of this process is described by the reaction-diffusion equations

OCA = DAV 2CA - kCACB,

aes (6)-- = DoV2c8 - kcAcsl,CI"B =f Da V2CB -- kCACB,()

where Di is the diffusion coefficient of species i and k is the reaction constant. For equal
fluxes of A's and B's injected at opposite ends of the system, the resulting steady state is
described by setting the time derivative to zero and postulating the boundary conditions

DC'AIrZL =j, Dc'Z=L =- 0 and Dc fL_ - 0, Dcwzfi U -- (7)
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These boundary conditions account for the constant and opposing particle fluxes and the
confinement of reactants within [-L, L.

Within this description, we determined the extent of the reaction zone and the spatial
distribution of the two species both by an asymptotic solution to the above equations and
from simple heuristic arguments. For example, for a large input flux, the concentration
profile is nearly linear near the domain boundaries with the magnitude of the slope pro-
portional to j/D. Since the reaction zone is the region for which the concentrations of
both species are non-negligible, then the concentration in the reaction zone should be of
the order jw/D, where w is the reaction zone width. Consequently, the number of an-
nihilation events per unit time is of order kcAcBw, which is obtained by integrating the
reaction term over the reaction zone. This quantity should equal the flux of particles 3
entering the domain. Therefore, balancing these two rates gives

kCACBW ..- k W ,,, j, (8)

or the reaction zone width w (, (2) /. Similarly, the typical concentration in the
reaction zone is

CA, C jW/D (9)

In the low flux limit, the concentration is almost independent of position and is pro-
portional to V/j. In the latter case, the local reaction rate reaches a maximum at the
edges of the system rather than at the midpoint. When the two species approach at a
finite velocity, there exists a critical velocity, above which the reactants essentially pass
through each other. Results similar to those in one dimension were found in two- and
three-dimensional radial geometries. Finally, we applied the quasistatic approximation to
our steady-state solution to recover the known time dependence for the reaction zone width
for the case of initially separated components with no external input. Our approaches are
also applicable to other stoichiometries.

(d) Kinetics and spatial structure in a competing population biology model
We ascertained the role of spatial inhomogeneities20 in the kinetics of competing bio-

logical species by investigating the kinetics in a prototypical population dynamics model2 '
which involves two competing species. Each diffusing species undergoes logistic growth,
i. e., a growth rate proportional to the density, and a self-regulation, which is proportional
to the density squared. In addition, there is a mutual competition where different species
tend to annihilate when they meet. These processes are embodied by the reaction-diffusion
equations,

aA DA V2 A - kAA(l - A) - kA ,AB,

iT ý(10)

"W = DiVmA - kaB(l - B) - kMAAB.

In the mean-field limit, where the species are assumed to be homogeneously distributed,
there is coexistence for sufficiently weak competition, kAD, kB.A• 1, while only one species
survives when the competition is strong.
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For diffusing species in one dimension, we have found a qualitatively different be-
havior. In the strong competition limit in one dimension, the populations organize into
single-species domains whose characteristic length grows logarithmically in time. We have
determined the detailed process by which a small domain of B's (for example) is overrun
by the larger surrounding domains of A's. The smaller domain shrinks rather slowly until
a critical size is reached, beyond which the smaller domain disappears almost immediately
afterward. This qualitative behavior is also found to occur in simulation studies in two
dimensions. In this case, domains grow as a power law in time, and the spatial pattern of
the domains strongly resembles those observed in spinodal decomposition. 22
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